Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions
This paper proposes a numerical method to predict the ice accretion shapes and aerodynamic performance of rotating vertical axis wind turbine (VAWTs) under icing conditions. A multiple reference frame (MRF) and sliding mesh technique (SMT) are combined to efficiently reflect the unsteady icing effec...
Gespeichert in:
Veröffentlicht in: | Journal of wind engineering and industrial aerodynamics 2021-09, Vol.216, p.104708, Article 104708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a numerical method to predict the ice accretion shapes and aerodynamic performance of rotating vertical axis wind turbine (VAWTs) under icing conditions. A multiple reference frame (MRF) and sliding mesh technique (SMT) are combined to efficiently reflect the unsteady icing effects on rotating wind turbines. The SMT calculates the flow field considering the rotational and unsteady effects of the VAWTs. The MRF can efficiently clarify the rotational effects of the droplet field and ice accretion. Using the MRF technique, a series of icing simulations is implemented in which the ice shapes are updated at azimuth angle intervals of 36°. Using the proposed method, ice shapes in agreement with those obtained in icing wind tunnel tests can be obtained. Moreover, ice that is evenly distributed over the blade surface under glaze ice conditions can be examined instead of only the forms concentrated on the leading-edge, such as ice horns. The overall output power of an ice-covered VAWT is noted to be significantly reduced. Massive flow separation is induced owing to the increased airfoil thickness at azimuthal angles between 0° and 180°. Nevertheless, the performance of the thickened airfoil is enhanced owing to the delayed flow separation via dynamic stall in azimuthal angles between 180° and 270°.
•A numerical method to predict the ice accretion shapes on vertical axis wind turbines.•The multiple reference frame method and sliding mesh technique are efficiently combined under quasi-steady assumption.•Validation results of ice accretion shapes against icing wind turbines. |
---|---|
ISSN: | 0167-6105 1872-8197 |
DOI: | 10.1016/j.jweia.2021.104708 |