Development of an icing simulation code for rotating wind turbines

This study aims to develop a three-dimensional icing simulation code named WISE (Wind turbine Icing Simulation code with performance Evaluation) integrated into OpenFOAM®. The freely available source code can contribute to icing simulations that require parallel computations. The rotational motion i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2020-08, Vol.203, p.104239, Article 104239
Hauptverfasser: Son, Chankyu, Kim, Taeseong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to develop a three-dimensional icing simulation code named WISE (Wind turbine Icing Simulation code with performance Evaluation) integrated into OpenFOAM®. The freely available source code can contribute to icing simulations that require parallel computations. The rotational motion is explained by a Moving Reference Frame (MRF) in both aerodynamic and droplet fields. The thin water film theory is applied in the thermodynamic module. To verify WISE, ice accretion shapes on NREL Phase VI under rime and glaze icing conditions were considered. The ice accretion shapes obtained by WISE were compared against FENSAP-ICE and another numerical simulation without the MRF method for the droplet field. For the rime condition, the icing limits, maximum thickness, and its location are well predicted by WISE compared with FENSAP-ICE while the simulation without the MRF method overestimates the icing limits and maximum thickness. For the glaze condition, only WISE and FENSAP-ICE results are compared where the icing limits are slightly different. On the suction side, WISE accurately predicts the maximum thickness, ice growth direction, and icing limits. However, the thickness of ice on the pressure side is underestimated. It might be necessary to have a turbulence model that can predict the flow transition. •Full there-dimensional wind turbine icing code named WISE (Wind turbine Icing Simulation code with performance Evaluation).•Open-source CFD, OpenFOAM® based icing simulation tool.•Moving reference frame method for both aerodynamic and droplet field modules.•Rime and glaze ice shapes on NREL Phase VI wind turbine.
ISSN:0167-6105
1872-8197
DOI:10.1016/j.jweia.2020.104239