Towards robust image watermarking via random distortion assignment based meta-learning

Recently, deep learning-based image watermarking methods have been proposed for copyright protection, which are robust to common post-processing operations. However, they suffer from distinct performance drops to open-set distortions, where distortions applied on testing samples are unseen in the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation 2024-08, Vol.103, p.104238, Article 104238
Hauptverfasser: Zhou, Shenglie, He, Peisong, Liu, Jiayong, Luo, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, deep learning-based image watermarking methods have been proposed for copyright protection, which are robust to common post-processing operations. However, they suffer from distinct performance drops to open-set distortions, where distortions applied on testing samples are unseen in the training stage. To address this issue, we propose a random distortion assignment-based meta-learning framework for robust image watermarking, where meta-train and meta-test tasks are constructed to simulate open-set distortion scenarios. The embedding and extraction network of watermark information is constructed based on the invertible neural network and equipped with a multi-stage distortion layer, which can conduct random combinations of basic post-processing operators. Besides, to obtain a better balance between robustness and visual imperceptibility, a hybrid loss function is designed by considering global and local similarities based on wavelet decomposition to capture multi-scale texture information. Extensive experiments are conducted by considering various open-set distortions to verify the superiority of the proposed method.
ISSN:1047-3203
DOI:10.1016/j.jvcir.2024.104238