Dual-branch vision transformer for blind image quality assessment

Blind image quality assessment (BIQA) has always been a challenging problem due to the absence of reference images. In this paper, we propose a novel dual-branch vision transformer for BIQA, which simultaneously considers both local distortions and global semantic information. It first extracts dual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visual communication and image representation 2023-06, Vol.94, p.103850, Article 103850
Hauptverfasser: Lee, Se-Ho, Kim, Seung-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blind image quality assessment (BIQA) has always been a challenging problem due to the absence of reference images. In this paper, we propose a novel dual-branch vision transformer for BIQA, which simultaneously considers both local distortions and global semantic information. It first extracts dual-scale features from the backbone network, and then each scale feature is fed into one of the transformer encoder branches as a local feature embedding to consider the scale-variant local distortions. Each transformer branch obtains the context of global image distortion as well as the local distortion by adopting content-aware embedding. Finally, the outputs of the dual-branch vision transformer are combined by using multiple feed-forward blocks to predict the image quality scores effectively. Experimental results demonstrate that the proposed BIQA method outperforms the conventional methods on the six public BIQA datasets.
ISSN:1047-3203
1095-9076
DOI:10.1016/j.jvcir.2023.103850