Fast and asymptotically-efficient estimation in an autoregressive process with fractional type noise
This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than n and singular asymptotic joint...
Gespeichert in:
Veröffentlicht in: | Journal of statistical planning and inference 2024-09, Vol.232, p.106148, Article 106148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than n and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations. |
---|---|
ISSN: | 0378-3758 1873-1171 |
DOI: | 10.1016/j.jspi.2024.106148 |