Limits of real bivariate rational functions
Given two nonzero polynomials f,g∈R[x,y] and a point (a,b)∈R2, we give some necessary and sufficient conditions for the existence of the limit lim(x,y)→(a,b)f(x,y)g(x,y). We also show that, if the denominator g has an isolated zero at the given point (a,b), then the set of possible limits of lim(x,...
Gespeichert in:
Veröffentlicht in: | Journal of symbolic computation 2025-07, Vol.129, p.102405, Article 102405 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given two nonzero polynomials f,g∈R[x,y] and a point (a,b)∈R2, we give some necessary and sufficient conditions for the existence of the limit lim(x,y)→(a,b)f(x,y)g(x,y). We also show that, if the denominator g has an isolated zero at the given point (a,b), then the set of possible limits of lim(x,y)→(a,b)f(x,y)g(x,y) is a closed interval in R‾ and can be explicitly determined. As an application, we propose an effective algorithm to verify the existence of the limit and compute the limit (if it exists). Our approach is geometric and is based on Puiseux expansions. |
---|---|
ISSN: | 0747-7171 |
DOI: | 10.1016/j.jsc.2024.102405 |