Limits of real bivariate rational functions

Given two nonzero polynomials f,g∈R[x,y] and a point (a,b)∈R2, we give some necessary and sufficient conditions for the existence of the limit lim(x,y)→(a,b)⁡f(x,y)g(x,y). We also show that, if the denominator g has an isolated zero at the given point (a,b), then the set of possible limits of lim(x,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation 2025-07, Vol.129, p.102405, Article 102405
Hauptverfasser: Đinh, Sĩ Tiệp, Guo, Feng, Nguyễn, Hồng Đức, Phạm, Tiến-Sơn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given two nonzero polynomials f,g∈R[x,y] and a point (a,b)∈R2, we give some necessary and sufficient conditions for the existence of the limit lim(x,y)→(a,b)⁡f(x,y)g(x,y). We also show that, if the denominator g has an isolated zero at the given point (a,b), then the set of possible limits of lim(x,y)→(a,b)⁡f(x,y)g(x,y) is a closed interval in R‾ and can be explicitly determined. As an application, we propose an effective algorithm to verify the existence of the limit and compute the limit (if it exists). Our approach is geometric and is based on Puiseux expansions.
ISSN:0747-7171
DOI:10.1016/j.jsc.2024.102405