Positive definiteness of infinite and finite dimensional generalized Hilbert tensors and generalized Cauchy tensor
An Infinite and finite dimensional generalized Hilbert tensor with a is positive definite if and only if a>0. The infinite dimensional generalized Hilbert tensor related operators F∞ and T∞ are bounded, continuous and positively homogeneous. A generalized Cauchy tensor of which generating vectors...
Gespeichert in:
Veröffentlicht in: | Journal of symbolic computation 2024-11, Vol.125, p.102326, Article 102326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An Infinite and finite dimensional generalized Hilbert tensor with a is positive definite if and only if a>0. The infinite dimensional generalized Hilbert tensor related operators F∞ and T∞ are bounded, continuous and positively homogeneous. A generalized Cauchy tensor of which generating vectors are c,d is positive definite if and only if every element of vector d is not zero and each element of vector c is positive and mutually distinct. The 4th order n-dimensional generalized Cauchy tensor is matrix positive semi-definite if and only if every element of generating vector c is positive. Finally, the other properties of generalized Cauchy tensor are presented. |
---|---|
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2024.102326 |