The Conlara Metamorphic Complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating

The Conlara Metamorphic Complex, the easternmost complex of the Sierra de San Luis, is a key unit to understand the relationship between the late Proterozoic-Early Cambrian Pampean and the Upper Cambrian-Middle Ordovician Famatinian orogenies of the Eastern Sierras Pampeanas. The Conlara Metamorphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of South American earth sciences 2021-03, Vol.106, p.103065, Article 103065
Hauptverfasser: López de Luchi, Mónica G., Martínez Dopico, Carmen I., Cutts, Kathryn A., Schulz, Bernhard, Siegesmund, Siegfried, Wemmer, Klaus, Montenegro, Teresita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Conlara Metamorphic Complex, the easternmost complex of the Sierra de San Luis, is a key unit to understand the relationship between the late Proterozoic-Early Cambrian Pampean and the Upper Cambrian-Middle Ordovician Famatinian orogenies of the Eastern Sierras Pampeanas. The Conlara Metamorphic Complex extends to the east to the foothills of the Sierra de Comechingones and to the west up the Río Guzmán shear zone. The main rock types of the CMC are metaclastic and metaigneous rocks that are intruded by Ordovician and Devonian granitoids. The metaclastic units comprise fine to medium-grained metagreywackes and scarce metapelites with lesser amounts of tourmaline schists and tourmalinites whereas the metaigneous rocks encompass basic and granitoids rocks. The former occur as rare amphibolite interlayered within the metasedimentary rocks. The granitic component corresponds to a series of orthogneisses and migmatites (stromatite and diatexite). The CMC is divided in four groups based on the dominant lithological associations: San Martin and La Cocha correspond mainly to schists and some gneisses and Santa Rosa and San Felipe encompass mainly paragneisses, migmatites and orthogneisses. The Conlara Metamoprphic Complex underwent a polyphase metamorphic evolution. The penetrative D2-S2 foliation was affected by upright, generally isoclinal, N-NE trending D3 folds that control the NNE outcrop patterns of the different groups. An earlier, relic S1 is preserved in microlithons. Discontinuous high-T shear zones within the schists and migmatites are related with D4 whereas some fine-grained discontinuous shear bands attest for a D5 deformation phase. Geochemistry of both non-migmatitic metaclastic units and amphibolites suggest that the Conlara Metamorphic Complex represents an arc related basin. Maximun depositional ages indicate a pre- 570 Ma deposition of the sediments. An ample interval between sedimentation and granite emplacement in the already metamorphic complex is indicated by the 497 ± 8 Ma age of El Peñon granite. D1-D2 history took place at 564 ± 21 Ma as indicated by one PbSL age calculated for the M2 garnet of La Cocha Group. D3 is constrained by the pervasively solid-state deformed Early Ordovician granitoids which exhibits folded xenoliths of the D1-D2 deformed metaclastic rocks. Pressure-temperature pseudosections were calculated for one amphibolite using the geologically realistic system MnNCKFMASHTO (MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2
ISSN:0895-9811
1873-0647
DOI:10.1016/j.jsames.2020.103065