SPEARS: A Database-Invariant Spectral modeling API

•SPEARS allows for simultaneous synthesizing of multiple spectroscopic databases.•Physics-based approach for modeling pressure broadening effects on spectra.•Adaptive grid mesh algorithm allows for fast simulation of spectra at high fidelity. The Spectral Physics Environment for Advanced Remote Sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2022-01, Vol.277, p.107958, Article 107958
Hauptverfasser: Murzyn, C.M., Jans, E.R., Clemenson, M.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•SPEARS allows for simultaneous synthesizing of multiple spectroscopic databases.•Physics-based approach for modeling pressure broadening effects on spectra.•Adaptive grid mesh algorithm allows for fast simulation of spectra at high fidelity. The Spectral Physics Environment for Advanced Remote Sensing (SPEARS) application programming interface (API) is a Python-based, line-by-line, local thermal equilibrium (LTE) spectral modeling code which is optimized for simultaneously synthesizing optical spectra from any combination of fundamental spectroscopic databases. In this article, we contribute two novel spectral modeling techniques to the scientific literature. First we describe how SPEARS integrates a physics-based collisional model for calculating pressure broadening in the absence of available broadening coefficients. With this collisional model implementation, a generalized approach to fundamental spectroscopic databases can be achieved across multiple databases. We also detail our adaptive grid mesh algorithm developed to make the code scalable for simulating large spectral bandwidths at high spectral fidelity using intuitive grid parameters. We present comparisons to other modeling tools, experiments, and provide a discussion on the SPEARS user interface.
ISSN:0022-4073
1879-1352
DOI:10.1016/j.jqsrt.2021.107958