FAIMS-MS might contribute to phosphopeptides identification in plasma

FAIMS interface is gaining popularity because of the impressive 100-fold signal to noise enhancement in addition to the recent coupling to the Orbitrap technology, the most important analyzer developed in the last 20 years. The selection of group of ions and effective removal of single-charged ones...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteomics 2021-03, Vol.234, p.104102, Article 104102
Hauptverfasser: Besada, V., Ramos, Y., Espinosa, L.A., Fu, W., Perera, Y., González, L.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FAIMS interface is gaining popularity because of the impressive 100-fold signal to noise enhancement in addition to the recent coupling to the Orbitrap technology, the most important analyzer developed in the last 20 years. The selection of group of ions and effective removal of single-charged ones at particular compensation voltages increases around 50% the proteome coverage at expenses of lower peptides coverage. However, specific setting for phosphoproteome analysis is yet poorly described. Here we have found the maximum transmission for several tryptic phosphopeptides isolated from a single complex mixture and we have set an experimental method based on five compensation voltages partially different to the ones described previously, demonstrating the relevance of voltages higher than 47 V, with an increase of around 20% of unique phosphopeptides. Using this experimental setup two complex phosphoproteomes isolates (SH-SY5Y cell line and plasma) were analyzed and found increments of 50% on phosphopeptides identification with the proposed method with respect to a previous one, for the cell line extract. Meanwhile for plasma 109 of the detected phosphopeptides are found for first time in this body fluid, presumably due to the release of intracellular proteins. With this FAIMS setup, 60% of the proteins identified are classified as very low abundant proteins.
ISSN:1874-3919
1876-7737
DOI:10.1016/j.jprot.2021.104102