Hydrogel-derived materials for microbial fuel cell
Microbial fuel cells (MFCs) represent a promising renewable energy source, harnessing the metabolic processes of microorganisms to generate electricity through substrate oxidation. Hydrogels have recently garnered significant attention for their potential to enhance MFC performance and efficiency by...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2025-01, Vol.625, p.235688, Article 235688 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial fuel cells (MFCs) represent a promising renewable energy source, harnessing the metabolic processes of microorganisms to generate electricity through substrate oxidation. Hydrogels have recently garnered significant attention for their potential to enhance MFC performance and efficiency by addressing critical challenges associated with electrode materials, proton exchange membranes, microbial immobilization, and overall system stability. This review comprehensively explores the latest advancements in hydrogel-based approaches for MFC applications. The article begins with the unique properties of hydrogels related to fuel cells, including their biocompatibility, porosity, ionic transport capability, and tunable physicochemical properties, which make them ideal candidates for MFC applications. Moreover, the review discusses diverse methodologies for incorporating hydrogels into MFCs, including electrode modification, microbial consortium immobilization matrices, and separators. Research findings indicate that incorporating conductive elements into hydrogels or fabricating hybrid hydrogel-based anodes has led to notable improvements in electrical conductivity and power density output. However, further research is imperative to enhance power generation efficiency, long-term stability, and scalable preparation for sustainable MFC operation. This review concludes by discussing the challenges and opportunities associated with the use of hydrogels in MFCs.
[Display omitted]
•Hydrogels boost MFC performance by enhancing electrodes, membranes, and microbe stability.•Biocompatibility and tunable porous properties are ideal for MFC applications.•Reviewed general concepts and impact of hydrogel as electrode and membrane for MFC.•Hydrogel has great potential to boost MFC performance. |
---|---|
ISSN: | 0378-7753 |
DOI: | 10.1016/j.jpowsour.2024.235688 |