Bridging the Gap between fundamentals and efficient devices: Advances in proton-conducting oxides for low-temperature solid oxide fuel cells
Low-temperature solid oxide fuel cells (LT-SOFCs) represent a cutting-edge solution in the domain of clean energy, poised to revolutionize electricity generation for both stationary and mobile applications. At the core of LT-SOFCs lies the proton-conducting solid oxide electrolyte, a subject of exte...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2024-09, Vol.613, p.234910, Article 234910 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-temperature solid oxide fuel cells (LT-SOFCs) represent a cutting-edge solution in the domain of clean energy, poised to revolutionize electricity generation for both stationary and mobile applications. At the core of LT-SOFCs lies the proton-conducting solid oxide electrolyte, a subject of extensive exploration and advancement. This comprehensive review investigates the evolution of proton-conducting solid oxide electrolytes for LT-SOFCs, exploring the landscape from fundamental materials to diverse device architectures. The review meticulously examines three pivotal dimensions: 1) strategies for fine-tuning the properties and structures of ceramics and proton-conducting oxides, 2) advancements in techniques for protonic-conducting fuel cells (PCFCs), and 3) an exploration of the opportunities and challenges intrinsic to the progression of electrolyte-based PCFCs. By elucidating the advancements made in optimizing conductivity, chemical stability, sinterability, and electron-blocking characteristics of proton-conducting electrolytes, this review offers invaluable insights into the state-of-the-art for LT-SOFC technology. Furthermore, it casts a forward-looking perspective, envisioning the future trajectory of proton-conducting electrolyte research and its potential to reshape the landscape of LT-SOFC technology. By providing a comprehensive overview of past achievements and future prospects, this review serves as a valuable resource for researchers, engineers, and stakeholders, guiding them towards the realization of efficient and sustainable energy solutions.
•Evolution of proton-conducting solid oxide electrolytes for LT-SOFCs.•Strategies for fine-tuning properties and structures of ceramics and oxides.•Advancements in techniques for protonic-conducting fuel cells (PCFCs).•Insights into conductivity, chemical stability, and electron-blocking characteristics.•Forward-looking perspective on the future trajectory of LT-SOFC technology. |
---|---|
ISSN: | 0378-7753 |
DOI: | 10.1016/j.jpowsour.2024.234910 |