Highly durable graphene-encapsulated platinum-based electrocatalyst for oxygen reduction reactions synthesized by solution plasma process

Though expensive platinum (Pt) is used as catalyst for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs), insufficient durability remains as a bottleneck for commercialization of PEFCs. Improving both catalytic performance and durability by graphene encapsulation is an attrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2023-10, Vol.580, p.233419, Article 233419
Hauptverfasser: Park, Jae-Hyeok, Kim, Kyusung, Wang, Xiaoyang, Huda, Miftakhul, Sawada, Yasuyuki, Matsuo, Yutaka, Saito, Nagahiro, Kawasumi, Masaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Though expensive platinum (Pt) is used as catalyst for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs), insufficient durability remains as a bottleneck for commercialization of PEFCs. Improving both catalytic performance and durability by graphene encapsulation is an attractive strategy to solve this problem. In this study, graphene-encapsulated PtFe core-shell catalyst is synthesized with dimethyl formamide (DMF) and a pair of Pt and Fe electrodes without using any metal salts by utilizing the solution plasma (SP) process. TEM and EELS results show synthesized PtFe nanoparticles are encapsulated with close to single-layered highly crystallized graphene. Although commercial Pt/C showed significant performance degradation (ECSA −33%, MA −68%) after 50,000 cycles of accelerated durability test (ADT), PtFe core-shell catalyst shows remarkably improved durability (ECSA −13%, MA −19%) while graphene shell clearly remains. The improved durability is more prominent in the single cell test, the decrease in maximum power density after 6000 cycles of ADT was significantly lower as −1.2%, compared to that of Pt/C (−52.1%). This study introduces a novel and attractive catalyst synthesis process by the SP method followed by heat treatments and suggests graphene encapsulation can improve long-term durability of catalyst while maintaining ORR activity. •Facile one-step synthesis of graphene core-shell catalyst without using any metal salt.•Removal of nitrogen doping to improve the durability of the graphene shell.•Graphene shell weaken adsorption of Pt-OHad or other intermediates.•Significant enhancement of durability and power density by graphene encapsulation.
ISSN:0378-7753
DOI:10.1016/j.jpowsour.2023.233419