Comprehensive study and improvement of experimental methods for obtaining referenced battery state-of-power
As a soft sensor, the state-of-power (SoP) estimator reveals critical information on battery-based energy storage systems. A set of reliable ‘referenced values’ is the key to evaluate the precision of such soft sensors at their designing stage and could influence the overall reliability of the batte...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2021-11, Vol.512, p.230462, Article 230462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a soft sensor, the state-of-power (SoP) estimator reveals critical information on battery-based energy storage systems. A set of reliable ‘referenced values’ is the key to evaluate the precision of such soft sensors at their designing stage and could influence the overall reliability of the battery systems. However, experimentally obtaining the ‘referenced SoP’ is non-trivial since high-current pulse tests (>10C) are required to charge/discharge the batteries to their cut-off conditions. The associated high-power experimental platforms could be expensive, while frequently applying large current at boundary conditions may leave potential safety issues. Aiming at these problems, this paper focuses on obtaining referenced SoP, rather than onboard SoP estimations. A novel equivalent discharging test is designed to accurately recover the voltage response of high-current pulses from a set of low-current tests, resulting in a 33% reduction of the peak discharging current. In addition, a flexible softmax neural network is further proposed to generate SoP values for the intervals between pulse tests. With these tools, reliable SoP values with errors lower than 0.5% can be readily obtained. The SoP obtained from our approach can be further utilised as a highly accurate benchmark to evaluate the accuracy of other onboard battery SoP estimators.
•This paper focuses on obtaining accurate ‘referenced state-of-power’ in the lab.•The maximum current of our proposed testing procedure can be reduced by 33%.•The error of the generated state-of-power can be bounded by only 0.5%.•The data-driven nature makes our method suitable for general batteries. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2021.230462 |