Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution
Lithium-ion battery packs are widely deployed as power sources in transportation electrification solutions. To ensure safe and reliable operation of battery packs, it is of critical importance to monitor operation status and diagnose the running faults in a timely manner. This study investigates a n...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2021-01, Vol.482, p.228964, Article 228964 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-ion battery packs are widely deployed as power sources in transportation electrification solutions. To ensure safe and reliable operation of battery packs, it is of critical importance to monitor operation status and diagnose the running faults in a timely manner. This study investigates a novel fault diagnosis and abnormality detection method for battery packs of electric scooters based on statistical distribution of operation data that are stored in the cloud monitoring platform. According to the battery current and scooter speed, the operation states of electric scooters are clarified, and the diagnosis coefficient is determined based on the Gaussian distribution to highlight the parameter variation in each state. On this basis, the K-means clustering algorithm, the Z-score method and 3σ screening approach are exploited to detect and locate the abnormal cells. By analyzing the abnormalities hidden beneath the external measurement and calculating the fault frequency of each cell in pack, the proposed algorithm can identify the faulty type and locate the faulty cell in a timely manner. Experimental results validate that the proposed method can accurately diagnose faults and monitor the status of battery packs. This theoretical study with practical implications shows the promising research direction of combining data mining technologies with machine learning methods for fault diagnosis and safety management of complex dynamical systems.
•The operation state of electric scooter is classified by current and speed.•A faults diagnosis and state monitoring scheme is proposed for lithium-ion battery.•The outlier screening algorithm is employed to detect and locate abnormal cell.•Fault frequency is imported to quantitatively evaluate healthy status of battery. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2020.228964 |