Unveiling the intrinsic reaction between silicon-graphite composite anode and ionic liquid electrolyte in lithium-ion battery
Due to the excellent theoretical capacity, silicon-based electrodes have been extensively studied to develop high energy-density lithium-ion batteries (LIBs). Nevertheless, the large volume expansion and unfavorable interface seriously hamper its application, and the underlying physics behind are st...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2020-10, Vol.473, p.228481, Article 228481 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the excellent theoretical capacity, silicon-based electrodes have been extensively studied to develop high energy-density lithium-ion batteries (LIBs). Nevertheless, the large volume expansion and unfavorable interface seriously hamper its application, and the underlying physics behind are still unclear. In this work, using in-situ environment scanning electron microscopy (ESEM), the morphological evolution of composite silicon-graphite electrodes with different ionic liquids as electrolytes are compared in the range of 20 °C–60 °C. Surprisingly, combining the microstructure and surface reaction products from transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), it finds out that the fully reaction of lithium-silicon does not generate huge volume expansion, while the side reaction between graphite and electrolyte decomposition products causes dramatic volume expansion and hinders the further lithiation of silicon. On the other hand, the electrolyte which is capable of rapidly releasing F− to form LiF-rich solid electrolyte interphase (SEI) is favorable to maintain the structure integrity and cycling performance. This work casts new understanding from the perspective of intrinsic reaction between electrode and ionic liquid electrolyte, which suggests that the practical application of silicon-based electrodes with appropriate electrolyte is a promising route for high energy-density LIBs.
[Display omitted]
•Morphological evolution were investigated by in-situ ESEM.•PYR13FSI and EMIMTFSI ionic liquids as electrolytes were compared.•The bonding environment around F determines the electrochemical performance.•Side reaction is responsible for the abnormal volume expansion. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2020.228481 |