Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model

Battery modeling and state estimation are critical to the battery safety and vehicle driving range. Currently, electrochemical mechanism based models require huge computation effort for solving partial differential equations, equivalent circuit models do not consider actual battery mechanism, while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2020-04, Vol.455, p.227935, Article 227935
Hauptverfasser: Feng, Fei, Teng, Sangli, Liu, Kailong, Xie, Jiale, Xie, Yi, Liu, Bo, Li, Kexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Battery modeling and state estimation are critical to the battery safety and vehicle driving range. Currently, electrochemical mechanism based models require huge computation effort for solving partial differential equations, equivalent circuit models do not consider actual battery mechanism, while machine learning models are lack of generalization ability due to their data-driven nature. All these problems bring the challenges to guarantee the model effectiveness in wide temperature and large current conditions. To estimate the battery state of charge (SOC) and state of temperature (SOT) under these conditions, an electrochemical-thermal-neural-network (ETNN) model is formulated in this paper. Specifically, a simplified single particle model and a lumped thermal model are served as the sub-models of ETNN to predict core temperature and provide approximate terminal voltage. Then a neural network is incorporated to enhance the performance of sub-models. According to the extensive experiments, ETNN model is able to accurately estimate battery voltage and core temperature under the ambient temperatures of -10–40 °C and the discharge rate of 10-C. After that, an unscented Kalman filter (UKF) is integrated with ETNN to achieve reliable co-estimation of SOC-SOT. Experimental results illustrate that proposed ETNN-UKF can rapidly eliminate initial errors and provide satisfactory co-estimation performance. •Formulation of a hybrid battery electrochemical-thermal-neural-network model.•High model accuracy under large currents and wide range of ambient temperatures.•Accurate co-estimation of SOC and SOT by integrating the unscented Kalman filter.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2020.227935