Power-closed ideals of polynomial and Laurent polynomial rings
We investigate the structure of power-closed ideals of the complex polynomial ring R=C[x1,…,xd] and the Laurent polynomial ring R±=C[x1,…,xd]±=S−1C[x1,…,xd], where S is the multiplicatively closed semigroup S=[x1,…,xd]. Here, an ideal I is power-closed if f(x1,…,xd)∈I implies f(x1i,…,xdi)∈I for each...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2024-12, Vol.228 (12), p.107733, Article 107733 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the structure of power-closed ideals of the complex polynomial ring R=C[x1,…,xd] and the Laurent polynomial ring R±=C[x1,…,xd]±=S−1C[x1,…,xd], where S is the multiplicatively closed semigroup S=[x1,…,xd]. Here, an ideal I is power-closed if f(x1,…,xd)∈I implies f(x1i,…,xdi)∈I for each natural number i. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of R and R± and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of R and R±. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2024.107733 |