On the Castelnuovo–Mumford regularity of squarefree powers of edge ideals

Assume that G is a graph with edge ideal I(G) and matching number match(G). For every integer s≥1, we denote the s-th squarefree power of I(G) by I(G)[s]. It is shown that for every positive integer s≤match(G), the inequality reg(I(G)[s])≤match(G)+s holds provided that G belongs to either of the fol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2024-03, Vol.228 (3), p.107488, Article 107488
1. Verfasser: Seyed Fakhari, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume that G is a graph with edge ideal I(G) and matching number match(G). For every integer s≥1, we denote the s-th squarefree power of I(G) by I(G)[s]. It is shown that for every positive integer s≤match(G), the inequality reg(I(G)[s])≤match(G)+s holds provided that G belongs to either of the following classes: (i) very well-covered graphs, (ii) semi-Hamiltonian graphs, or (iii) sequentially Cohen-Macaulay graphs. Moreover, we prove that for every Cameron-Walker graph G and for every positive integer s≤match(G), we have reg(I(G)[s])=match(G)+s.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2023.107488