On the Castelnuovo–Mumford regularity of squarefree powers of edge ideals
Assume that G is a graph with edge ideal I(G) and matching number match(G). For every integer s≥1, we denote the s-th squarefree power of I(G) by I(G)[s]. It is shown that for every positive integer s≤match(G), the inequality reg(I(G)[s])≤match(G)+s holds provided that G belongs to either of the fol...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2024-03, Vol.228 (3), p.107488, Article 107488 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that G is a graph with edge ideal I(G) and matching number match(G). For every integer s≥1, we denote the s-th squarefree power of I(G) by I(G)[s]. It is shown that for every positive integer s≤match(G), the inequality reg(I(G)[s])≤match(G)+s holds provided that G belongs to either of the following classes: (i) very well-covered graphs, (ii) semi-Hamiltonian graphs, or (iii) sequentially Cohen-Macaulay graphs. Moreover, we prove that for every Cameron-Walker graph G and for every positive integer s≤match(G), we have reg(I(G)[s])=match(G)+s. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2023.107488 |