Quasi-injective dimension
Following our previous work about quasi-projective dimension [11], in this paper, we introduce quasi-injective dimension as a generalization of injective dimension. We recover several well-known results about injective and Gorenstein-injective dimensions in the context of quasi-injective dimension s...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2024-02, Vol.228 (2), p.107468, Article 107468 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following our previous work about quasi-projective dimension [11], in this paper, we introduce quasi-injective dimension as a generalization of injective dimension. We recover several well-known results about injective and Gorenstein-injective dimensions in the context of quasi-injective dimension such as the following. (a) If the quasi-injective dimension of a finitely generated module M over a local ring R is finite, then it is equal to the depth of R. (b) If there exists a finitely generated module of finite quasi-injective dimension and maximal Krull dimension, then R is Cohen-Macaulay. (c) If there exists a nonzero finitely generated module with finite projective dimension and finite quasi-injective dimension, then R is Gorenstein. (d) Over a Gorenstein local ring, the quasi-injective dimension of a finitely generated module is finite if and only if its quasi-projective dimension is finite. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2023.107468 |