Noncommutative Pierce duality between Steinberg rings and ample ringoid bundles
Classic work of Pierce and Dauns-Hofmann shows that biregular rings are dual to simple ring bundles over Stone spaces. We extend this duality to Steinberg rings, a purely algebraic generalisation of Steinberg algebras, and ringoid bundles over ample groupoids. We base this largely on an even more ge...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2023-11, Vol.227 (11), p.107407, Article 107407 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classic work of Pierce and Dauns-Hofmann shows that biregular rings are dual to simple ring bundles over Stone spaces. We extend this duality to Steinberg rings, a purely algebraic generalisation of Steinberg algebras, and ringoid bundles over ample groupoids. We base this largely on an even more general extension of Lawson's noncommutative Stone duality, specifically between Steinberg semigroups, a generalisation of Boolean inverse semigroups, and category bundles over ample groupoids. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2023.107407 |