Image-extension-closed subcategories of module categories of hereditary algebras

We study IE-closed subcategories of a module category, subcategories which are closed under taking Images and Extensions. We investigate the relation between IE-closed subcategories and torsion pairs, and characterize τ-tilting finite algebras using IE-closed subcategories. For the hereditary case,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2023-09, Vol.227 (9), p.107372, Article 107372
Hauptverfasser: Enomoto, Haruhisa, Sakai, Arashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study IE-closed subcategories of a module category, subcategories which are closed under taking Images and Extensions. We investigate the relation between IE-closed subcategories and torsion pairs, and characterize τ-tilting finite algebras using IE-closed subcategories. For the hereditary case, we show that IE-closed subcategories can be classified by twin rigid modules, pairs of rigid modules satisfying some homological conditions. Moreover, we introduce mutation of twin rigid modules analogously to tilting modules, which gives a way to calculate all twin rigid modules for the representation-finite case.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2023.107372