Restricted modules for gap-p Virasoro algebra and twisted modules for certain vertex algebras
This paper studies restricted modules of gap-p Virasoro algebra gp and their intrinsic connection to twisted modules of certain vertex algebras. We first establish an equivalence between the category of restricted gp-modules of level ℓ_ and the category of twisted modules of vertex algebra VNp(ℓ_,0)...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2023-07, Vol.227 (7), p.107322, Article 107322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies restricted modules of gap-p Virasoro algebra gp and their intrinsic connection to twisted modules of certain vertex algebras. We first establish an equivalence between the category of restricted gp-modules of level ℓ_ and the category of twisted modules of vertex algebra VNp(ℓ_,0), where Np is a new Lie algebra, ℓ_:=(ℓ0,0,⋯,0)∈C[p2]+1, ℓ0∈C is the action of the Virasoro center. Then we focus on the construction and classification of simple restricted gp-modules of level ℓ_. More explicitly, we give a uniform construction of simple restricted gp-modules as induced modules. We present several equivalent characterizations of simple restricted gp-modules, as locally nilpotent (equivalently, locally finite) modules with respect to certain positive part of gp. Moreover, simple restricted gp-modules of level ℓ_ are classified. They are either highest weight modules or simple induced modules. At the end, we exhibit several concrete examples of simple restricted gp-modules of level ℓ_ (including Whittaker modules). |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2023.107322 |