Data loci in algebraic optimization
We consider parametric optimization problems from an algebraic viewpoint. The idea is to find all of the critical points of an objective function thereby determining a global optimum. For generic parameters (data) in the objective function the number of critical points remains constant. This number...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2022-12, Vol.226 (12), p.107144, Article 107144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider parametric optimization problems from an algebraic viewpoint. The idea is to find all of the critical points of an objective function thereby determining a global optimum. For generic parameters (data) in the objective function the number of critical points remains constant. This number is known as the algebraic degree of an optimization problem. In this article, we go further by considering the inverse problem of finding parameters of the objective function so it gives rise to critical points exhibiting a special structure. For example if the critical point is in the singular locus, has some symmetry, or satisfies some other algebraic property. Our main result is a theorem describing such parameters. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2022.107144 |