Data loci in algebraic optimization

We consider parametric optimization problems from an algebraic viewpoint. The idea is to find all of the critical points of an objective function thereby determining a global optimum. For generic parameters (data) in the objective function the number of critical points remains constant. This number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2022-12, Vol.226 (12), p.107144, Article 107144
Hauptverfasser: Horobeţ, Emil, Rodriguez, Jose Israel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider parametric optimization problems from an algebraic viewpoint. The idea is to find all of the critical points of an objective function thereby determining a global optimum. For generic parameters (data) in the objective function the number of critical points remains constant. This number is known as the algebraic degree of an optimization problem. In this article, we go further by considering the inverse problem of finding parameters of the objective function so it gives rise to critical points exhibiting a special structure. For example if the critical point is in the singular locus, has some symmetry, or satisfies some other algebraic property. Our main result is a theorem describing such parameters.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2022.107144