Birational automorphism groups and the movable cone theorem for Calabi–Yau complete intersections of products of projective spaces

For a Calabi-Yau manifold X, the Kawamata – Morrison movable cone conjecture connects the convex geometry of the movable cone Mov‾(X) to the birational automorphism group. Using the theory of Coxeter groups, Cantat and Oguiso proved that the conjecture is true for general varieties of Wehler type, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2022-10, Vol.226 (10), p.107093, Article 107093
1. Verfasser: Yáñez, José Ignacio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a Calabi-Yau manifold X, the Kawamata – Morrison movable cone conjecture connects the convex geometry of the movable cone Mov‾(X) to the birational automorphism group. Using the theory of Coxeter groups, Cantat and Oguiso proved that the conjecture is true for general varieties of Wehler type, and they described explicitly Bir(X). We generalize their argument to prove the conjecture and describe Bir(X) for general complete intersections of ample divisors in arbitrary products of projective spaces. Then, under a certain condition, we give a description of the boundary of Mov‾(X) and an application connected to the numerical dimension of divisors.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2022.107093