On the smoothness of lexicographic points on Hilbert schemes
We study the geometry of standard graded Hilbert schemes of polynomial rings and exterior algebras. Our investigation is motivated by a famous theorem of Reeves–Stillman for the Grothendieck Hilbert scheme, which states that the lexicographic point is smooth. By contrast, we show that, in standard g...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2022-03, Vol.226 (3), p.106872, Article 106872 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the geometry of standard graded Hilbert schemes of polynomial rings and exterior algebras. Our investigation is motivated by a famous theorem of Reeves–Stillman for the Grothendieck Hilbert scheme, which states that the lexicographic point is smooth. By contrast, we show that, in standard graded Hilbert schemes of polynomial rings and exterior algebras, the lexicographic point can be singular, and it can lie in multiple irreducible components. We answer questions of Peeva–Stillman and of Maclagan–Smith. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2021.106872 |