Intersections, sums, and the Jordan-Hölder property for exact categories

We investigate how the concepts of intersection and sums of subobjects carry to exact categories. We obtain a new characterisation of quasi-abelian categories in terms of admitting admissible intersections in the sense of [23]. There are also many alternative characterisations of abelian categories...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2021-11, Vol.225 (11), p.106724, Article 106724
Hauptverfasser: Brüstle, Thomas, Hassoun, Souheila, Tattar, Aran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate how the concepts of intersection and sums of subobjects carry to exact categories. We obtain a new characterisation of quasi-abelian categories in terms of admitting admissible intersections in the sense of [23]. There are also many alternative characterisations of abelian categories as those that additionally admit admissible sums and in terms of properties of admissible morphisms. We then define a generalised notion of intersection and sum which every exact category admits. Using these new notions, we define and study classes of exact categories that satisfy the Jordan-Hölder property for exact categories, namely the Diamond exact categories and Artin-Wedderburn exact categories. By explicitly describing all exact structures on A=repΛ for a Nakayama algebra Λ we characterise all Artin-Wedderburn exact structures on A and show that these are precisely the exact structures with the Jordan-Hölder property.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2021.106724