Unbounded derived categories of small and big modules: Is the natural functor fully faithful?
Consider the obvious functor from the unbounded derived category of all finitely generated modules over a left noetherian ring R to the unbounded derived category of all modules. We answer the natural question whether this functor defines an equivalence onto the full subcategory of complexes with fi...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2021-11, Vol.225 (11), p.106722, Article 106722 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the obvious functor from the unbounded derived category of all finitely generated modules over a left noetherian ring R to the unbounded derived category of all modules. We answer the natural question whether this functor defines an equivalence onto the full subcategory of complexes with finitely generated cohomology modules in two special cases. If R is a quasi-Frobenius ring of infinite global dimension, then this functor is not full. If R has finite left global dimension, this functor is an equivalence. We also prove variants of the latter assertion for left coherent rings, for noetherian schemes and for locally noetherian Grothendieck categories. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2021.106722 |