Module categories over affine supergroup schemes

Let k be an algebraically closed field of characteristic 0 or p>2. Let G be an affine supergroup scheme over k. We classify the indecomposable exact module categories over the tensor category sCohf(G) of (coherent sheaves of) finite dimensional O(G)-supermodules in terms of (H,Ψ)-equivariant cohe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2021-11, Vol.225 (11), p.106711, Article 106711
1. Verfasser: Gelaki, Shlomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be an algebraically closed field of characteristic 0 or p>2. Let G be an affine supergroup scheme over k. We classify the indecomposable exact module categories over the tensor category sCohf(G) of (coherent sheaves of) finite dimensional O(G)-supermodules in terms of (H,Ψ)-equivariant coherent sheaves on G. We deduce from it the classification of indecomposable geometrical module categories over sRep(G). When G is finite, this yields the classification of all indecomposable exact module categories over the finite tensor category sRep(G). In particular, we obtain a classification of twists for the supergroup algebra kG of a finite supergroup scheme G, and then combine it with [7, Corollary 4.1] to classify finite dimensional triangular Hopf algebras with the Chevalley property over k.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2021.106711