Module categories over affine supergroup schemes
Let k be an algebraically closed field of characteristic 0 or p>2. Let G be an affine supergroup scheme over k. We classify the indecomposable exact module categories over the tensor category sCohf(G) of (coherent sheaves of) finite dimensional O(G)-supermodules in terms of (H,Ψ)-equivariant cohe...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2021-11, Vol.225 (11), p.106711, Article 106711 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be an algebraically closed field of characteristic 0 or p>2. Let G be an affine supergroup scheme over k. We classify the indecomposable exact module categories over the tensor category sCohf(G) of (coherent sheaves of) finite dimensional O(G)-supermodules in terms of (H,Ψ)-equivariant coherent sheaves on G. We deduce from it the classification of indecomposable geometrical module categories over sRep(G). When G is finite, this yields the classification of all indecomposable exact module categories over the finite tensor category sRep(G). In particular, we obtain a classification of twists for the supergroup algebra kG of a finite supergroup scheme G, and then combine it with [7, Corollary 4.1] to classify finite dimensional triangular Hopf algebras with the Chevalley property over k. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2021.106711 |