The algebraic matroid of the finite unit norm tight frame (funtf) variety
A finite unit norm tight frame is a collection of r vectors in Rn that generalizes the notion of orthonormal bases. The affine finite unit norm tight frame variety is the Zariski closure of the set of finite unit norm tight frames. Determining the fiber of a projection of this variety onto a set of...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2020-08, Vol.224 (8), p.106351, Article 106351 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite unit norm tight frame is a collection of r vectors in Rn that generalizes the notion of orthonormal bases. The affine finite unit norm tight frame variety is the Zariski closure of the set of finite unit norm tight frames. Determining the fiber of a projection of this variety onto a set of coordinates is called the algebraic finite unit norm tight frame completion problem. Our techniques involve the algebraic matroid of an algebraic variety, which encodes the dimensions of fibers of coordinate projections. This work characterizes the bases of the algebraic matroid underlying the variety of finite unit norm tight frames in R3. Partial results towards similar characterizations for finite unit norm tight frames in Rn with n≥4 are also given. We provide a method to bound the degree of the projections based off of combinatorial data. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2020.106351 |