SymNOM-GED: Symmetric neighbor outlier mining in gene expression datasets
The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell C...
Gespeichert in:
Veröffentlicht in: | Journal of computational science 2024-09, Vol.81, p.102365, Article 102365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts. |
---|---|
ISSN: | 1877-7503 |
DOI: | 10.1016/j.jocs.2024.102365 |