SymNOM-GED: Symmetric neighbor outlier mining in gene expression datasets

The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational science 2024-09, Vol.81, p.102365, Article 102365
Hauptverfasser: Baruah, Bikash, Dutta, Manash P., Banerjee, Subhasish, Bhattacharyya, Dhruba K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate detection of outliers in gene expression datasets plays a crucial role in the unraveling of intricate biological processes. This research introduces "SymNOM-GED," an innovative algorithm for outlier mining in gene expression datasets, with a focus on Esophageal Squamous Cell Carcinoma (ESCC). SymNOM-GED leverages symmetric neighbor to effectively identify outliers by considering local and global gene expression patterns. Extensive experiments demonstrate that SymNOM-GED outperforms existing algorithms in terms of accuracy, robustness, and scalability. The algorithm's performance is validated using clustering coefficient, graph density, and modularity, confirming its superiority. SymNOM-GED's precise and reliable outlier detection capabilities contribute significantly to bioinformatics research, offering insights into gene expression patterns in diverse biological contexts.
ISSN:1877-7503
DOI:10.1016/j.jocs.2024.102365