The impact of helium clusters on the electronic thermal transport properties of tungsten plasma-facing materials at finite temperatures

In this work, we investigated the impact of different concentrations of helium (He) impurities on the electronic thermal transport properties of tungsten plasma-facing materials (W-PFMs) at finite temperatures using the W-He tight-binding (TB) potential model. We found that the electronic transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2024-10, Vol.599, p.155255, Article 155255
Hauptverfasser: Fu, Zhao-Zhong, Pan, B.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we investigated the impact of different concentrations of helium (He) impurities on the electronic thermal transport properties of tungsten plasma-facing materials (W-PFMs) at finite temperatures using the W-He tight-binding (TB) potential model. We found that the electronic transport performance decreases with increasing He atom concentration at different sites, where the greatest reduction in the electrical conductivity of the system is caused by the introduction of He atoms at neighboring tetrahedral sites. As the temperature increases, the electrical conductivity decreases, while the electronic thermal conductivity increases. Importantly, the higher the temperature is, the weaker the response of the electrical conductivity and electronic thermal conductivity to the He atom concentration. We suggest that this behavior is attributed to the diverse contributions of scattering mechanisms within various temperature ranges. Furthermore, as the temperature increases, the electron scattering mechanism gradually transitions from electron-impurity scattering to electron-electron scattering. Additionally, our calculated atomic resolved electrical conductivity data indicate that at lower temperatures, the electrical conductivity is predominantly contributed by W atoms around the He cluster.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2024.155255