Multivariate unified skew-t distributions and their properties
The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributi...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2024-09, Vol.203, p.105322, Article 105322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parameterization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2024.105322 |