Depth-weighted means of noisy data: An application to estimating the average effect in heterogeneous panels

We study the depth-weighted L-type location estimator of multivariate data when the observations are measured with noise. Under a drifting asymptotic framework, we show that the depth-weighted mean estimators with noisy data are still consistent and asymptotically mean-zero Gaussian under mild condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2023-07, Vol.196, p.105165, Article 105165
Hauptverfasser: Lee, Yoonseok, Sul, Donggyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the depth-weighted L-type location estimator of multivariate data when the observations are measured with noise. Under a drifting asymptotic framework, we show that the depth-weighted mean estimators with noisy data are still consistent and asymptotically mean-zero Gaussian under mild conditions. We apply the results to longitudinal data models of heterogeneous agents and develop the depth-weighted mean-group estimator of a vector of random coefficients, which estimates the multivariate average effect in heterogeneous panels or among heterogeneous treatment effects. As an empirical illustration, we examine the relative purchasing power parity.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2023.105165