Depth-weighted means of noisy data: An application to estimating the average effect in heterogeneous panels
We study the depth-weighted L-type location estimator of multivariate data when the observations are measured with noise. Under a drifting asymptotic framework, we show that the depth-weighted mean estimators with noisy data are still consistent and asymptotically mean-zero Gaussian under mild condi...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2023-07, Vol.196, p.105165, Article 105165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the depth-weighted L-type location estimator of multivariate data when the observations are measured with noise. Under a drifting asymptotic framework, we show that the depth-weighted mean estimators with noisy data are still consistent and asymptotically mean-zero Gaussian under mild conditions. We apply the results to longitudinal data models of heterogeneous agents and develop the depth-weighted mean-group estimator of a vector of random coefficients, which estimates the multivariate average effect in heterogeneous panels or among heterogeneous treatment effects. As an empirical illustration, we examine the relative purchasing power parity. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2023.105165 |