Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings
In this paper, we consider clustering based on the kernel principal component analysis (KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why the Gaussian kernel is effective for clustering high-dimensional data. In addition, we discuss a choice of the scale paramet...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2021-09, Vol.185, p.104779, Article 104779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider clustering based on the kernel principal component analysis (KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons why the Gaussian kernel is effective for clustering high-dimensional data. In addition, we discuss a choice of the scale parameter yielding a high performance of the KPCA with the Gaussian kernel. Finally, we test the performance of the clustering by using microarray data sets. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2021.104779 |