Bayesian shrinkage estimation of negative multinomial parameter vectors

The negative multinomial distribution is a multivariate generalization of the negative binomial distribution. In this paper, we consider the problem of estimating an unknown matrix of probabilities on the basis of observations of negative multinomial variables under the standardized squared error lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2020-09, Vol.179, p.104653, Article 104653
Hauptverfasser: Hamura, Yasuyuki, Kubokawa, Tatsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The negative multinomial distribution is a multivariate generalization of the negative binomial distribution. In this paper, we consider the problem of estimating an unknown matrix of probabilities on the basis of observations of negative multinomial variables under the standardized squared error loss. First, a general sufficient condition for a shrinkage estimator to dominate the UMVU estimator is derived and an empirical Bayes estimator satisfying the condition is constructed. Next, a hierarchical shrinkage prior is introduced, an associated Bayes estimator is shown to dominate the UMVU estimator under some conditions, and some remarks about posterior computation are presented. Finally, shrinkage estimators and the UMVU estimator are compared by simulation.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2020.104653