Improved forming height and reduced energy consumption through an optimized hybrid quasi-static and high-speed forming strategy
It is widely accepted that aluminum alloy-based materials exhibit improved formability and enhanced ductility under high-speed impact. However, in this study, the experimental results were not entirely similar to the traditional theoretical results. Thus, this study once again confirms the conclusio...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2024-11, Vol.332, p.118576, Article 118576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is widely accepted that aluminum alloy-based materials exhibit improved formability and enhanced ductility under high-speed impact. However, in this study, the experimental results were not entirely similar to the traditional theoretical results. Thus, this study once again confirms the conclusion that high-rate forming can increase the forming limit of materials, and simultaneously supplements the conclusion. Herein, a hybrid process combining quasi-static hydraulic forming and electromagnetic hydraulic forming was proposed. The effects of the forming sequence and pre-deformation amount on sheet bulging and fracture morphology were analyzed via experiments and simulation. It was found that when the electromagnetic hydraulic forming is pre-deformation and the quasi-static hydraulic forming is post-deformation, the forming height of aluminum alloy does not improve significantly. Conversely, when the quasi-static hydraulic forming is pre-deformation and the electromagnetic hydraulic forming is post-deformation, the forming height of aluminum alloy improves significantly. In case of pre-deformation quasi-static liquid pressure P0 = 2 MPa, and post-deformation electromagnetic hydraulic forming, the limit forming height is 22.4 % higher than that under quasi-static hydraulic forming. Moreover, the limiting voltage decreases with increasing pre-deformation quasi-static liquid pressure P0, and the energy consumption reduces by 42.9 %. The deformation behavior and damage characteristics of quasi-static hydraulic forming, electromagnetic hydraulic forming, and hybrid forming were accurately predicted by multi-physics coupling analysis. Compared with quasi-static hydraulic forming, void nucleation and growth are inhibited due to high-speed impact. In particular, when the sheet is about to crack during high-speed forming, the voids that should have grown sharply are significantly inhibited. Therefore, the improved formability mainly acts at the post-deformation stage during high-speed forming, with the analytical results corroborating the experimental and simulation ones.
[Display omitted]
•Formability improved of high-speed forming only exist under certain conditions.•Void nucleation and growth are inhibited during high-speed impact by experiment, simulation and theoretical derivation.•The experimental and simulated fracture morphologies of different hybrid forming strategy are consistent.•Instability stage was prevented mainly acts at post deformation during hig |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2024.118576 |