Improved machinability of single crystal silicon by applying in-situ laser-vibration hybrid assisted diamond cutting

Single crystal silicon is an important optical material used widely in the infrared systems. The surface quality and subsurface damage of silicon seriously affect the service performance. In this study, an in-situ laser-vibration hybrid assisted diamond cutting technology is proposed. The properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2024-05, Vol.326, p.118343, Article 118343
Hauptverfasser: Zhang, Jianguo, Li, Xinhuan, Fu, Yufan, Zheng, Yunxiang, Mo, Honglei, Chen, Xiao, Xiao, Junfeng, Xu, Jianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single crystal silicon is an important optical material used widely in the infrared systems. The surface quality and subsurface damage of silicon seriously affect the service performance. In this study, an in-situ laser-vibration hybrid assisted diamond cutting technology is proposed. The properties of cutting device were tested as experimental parameters. A series of grooving experiments were carried out with different cutting methods and the microlenses on silicon were successfully fabricated based on better manufacturing parameters. The surface morphology and subsurface damage was investigated from sin-wave structure manufacturing. Experimental results show that in-situ laser-vibration hybrid assisted diamond cutting effectively improves surface quality and inhibits subsurface lattice distortion. Compared with conventional diamond cutting, the depth of brittle transition increases by about 10 times with 1075 nm. Under the same cutting parameters, the formation of surface cracks of microlenses and sin-wave structure are significantly inhibited by applying in-situ laser-vibration hybrid assisted diamond cutting. This new technology is an effective and promising method for ultra-precision machining silicon. [Display omitted] •In-situ laser-vibration hybrid assisted diamond cutting technology is proposed and used in machining single crystal silicon novelly.•Compared with conventional diamond cutting, the depth of brittle transition increases by about 10 times with 1075 nm.•Surface and subsurface quality is improved compared with single force- or heat-field assisted cutting.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2024.118343