Partial regularity of minimizers of quasiconvex variational integrals via interpolation
We prove optimal partial regularity of vector-valued minimizers u of the quasiconvex variational integral ∫F(x,u,Du)dx under polynomial growth of its integrand F. We employ a new direct method based on the interpolation of a Sobolev function w between its gradient Dw and the elliptic operator divADw...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2025-05, Vol.545 (2), p.129161, Article 129161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove optimal partial regularity of vector-valued minimizers u of the quasiconvex variational integral ∫F(x,u,Du)dx under polynomial growth of its integrand F. We employ a new direct method based on the interpolation of a Sobolev function w between its gradient Dw and the elliptic operator divADw with constant coefficient A. |
---|---|
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2024.129161 |