Scattering and blow up for nonlinear Schrödinger equation with the averaged nonlinearity

We consider the 3-dimensional nonlinear Schrödinger equation (NLS) with average nonlinearity. This is a limiting model of NLS with strong magnetic confinement and a generalized model of the resonant system of NLS with a partial harmonic oscillator in terms of nonlinear power. We provide a new proof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2025-03, Vol.543 (2), p.128932, Article 128932
1. Verfasser: Kawakami, Jumpei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the 3-dimensional nonlinear Schrödinger equation (NLS) with average nonlinearity. This is a limiting model of NLS with strong magnetic confinement and a generalized model of the resonant system of NLS with a partial harmonic oscillator in terms of nonlinear power. We provide a new proof for the conservation law of kinetic energy and remove the restriction on nonlinearity. Moreover, in the case of focusing, super-quintic, and sub-nonic, we construct a new ground-state solution and classify the behavior of the solutions below the ground state. We demonstrate a sharp threshold for scattering and blow-up.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128932