Riesz and Kolmogorov inequality for harmonic quasiregular mappings

Let K⩾1 and p∈(1,2]. We obtain an asymptotically sharp constant c(K,p) as K→1 in the inequality‖ℑf‖p≤c(K,p)‖ℜf‖p, where f∈hp is a K-quasiregular harmonic mapping in the unit disk belonging to the Hardy space hp. This result holds under the conditions arg⁡(f(0))∈(−π2p,π2p) and f(D)∩(−∞,0)=∅. Our find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2025-02, Vol.542 (1), p.128767, Article 128767
1. Verfasser: Kalaj, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K⩾1 and p∈(1,2]. We obtain an asymptotically sharp constant c(K,p) as K→1 in the inequality‖ℑf‖p≤c(K,p)‖ℜf‖p, where f∈hp is a K-quasiregular harmonic mapping in the unit disk belonging to the Hardy space hp. This result holds under the conditions arg⁡(f(0))∈(−π2p,π2p) and f(D)∩(−∞,0)=∅. Our findings improve a recent result by Liu and Zhu [12]. Additionally, we extend this result to K-quasiregular harmonic mappings in the unit ball in Rn. Finally, we consider the Kolmogorov theorem for quasiregular harmonic mappings in the plane.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128767