Riesz and Kolmogorov inequality for harmonic quasiregular mappings
Let K⩾1 and p∈(1,2]. We obtain an asymptotically sharp constant c(K,p) as K→1 in the inequality‖ℑf‖p≤c(K,p)‖ℜf‖p, where f∈hp is a K-quasiregular harmonic mapping in the unit disk belonging to the Hardy space hp. This result holds under the conditions arg(f(0))∈(−π2p,π2p) and f(D)∩(−∞,0)=∅. Our find...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2025-02, Vol.542 (1), p.128767, Article 128767 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K⩾1 and p∈(1,2]. We obtain an asymptotically sharp constant c(K,p) as K→1 in the inequality‖ℑf‖p≤c(K,p)‖ℜf‖p, where f∈hp is a K-quasiregular harmonic mapping in the unit disk belonging to the Hardy space hp. This result holds under the conditions arg(f(0))∈(−π2p,π2p) and f(D)∩(−∞,0)=∅. Our findings improve a recent result by Liu and Zhu [12]. Additionally, we extend this result to K-quasiregular harmonic mappings in the unit ball in Rn. Finally, we consider the Kolmogorov theorem for quasiregular harmonic mappings in the plane. |
---|---|
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2024.128767 |