Existence and multiplicity of solutions for a p(x)-Choquard-Kirchhoff problem involving critical growth and concave-convex nonlinearities
This paper is devoted to studying a kind of p(x)-Choquard-Kirchhoff problems involving critical growth and concave-convex nonlinearities. Combining the concentration-compactness principle for weighted variable exponent spaces, the calculus of variations, genus theory and the Hardy-Littlewood-Sobolev...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2025-02, Vol.542 (1), p.128765, Article 128765 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to studying a kind of p(x)-Choquard-Kirchhoff problems involving critical growth and concave-convex nonlinearities. Combining the concentration-compactness principle for weighted variable exponent spaces, the calculus of variations, genus theory and the Hardy-Littlewood-Sobolev type inequality, we obtain the existence of nontrivial solutions for this kind of p(x)-Choquard-Kirchhoff problems. Our results improve the related ones in the literature. |
---|---|
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2024.128765 |