Existence and multiplicity of solutions for a p(x)-Choquard-Kirchhoff problem involving critical growth and concave-convex nonlinearities

This paper is devoted to studying a kind of p(x)-Choquard-Kirchhoff problems involving critical growth and concave-convex nonlinearities. Combining the concentration-compactness principle for weighted variable exponent spaces, the calculus of variations, genus theory and the Hardy-Littlewood-Sobolev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2025-02, Vol.542 (1), p.128765, Article 128765
Hauptverfasser: Ma, Wei, Zhang, Qiongfen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to studying a kind of p(x)-Choquard-Kirchhoff problems involving critical growth and concave-convex nonlinearities. Combining the concentration-compactness principle for weighted variable exponent spaces, the calculus of variations, genus theory and the Hardy-Littlewood-Sobolev type inequality, we obtain the existence of nontrivial solutions for this kind of p(x)-Choquard-Kirchhoff problems. Our results improve the related ones in the literature.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128765