Function theory in the bfd-norm on an elliptical region

Let E be the open region in the complex plane bounded by an ellipse. The B. and F. Delyon norm ‖⋅‖bfd on the space Hol(E) of holomorphic functions on E is defined by‖f‖bfd=defsupT∈Fbfd(E)⁡‖f(T)‖, where Fbfd(E) is the class of operators T such that the closure of the numerical range of T is contained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2025-01, Vol.541 (2), p.128732, Article 128732
Hauptverfasser: Agler, Jim, Lykova, Zinaida A., Young, N.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be the open region in the complex plane bounded by an ellipse. The B. and F. Delyon norm ‖⋅‖bfd on the space Hol(E) of holomorphic functions on E is defined by‖f‖bfd=defsupT∈Fbfd(E)⁡‖f(T)‖, where Fbfd(E) is the class of operators T such that the closure of the numerical range of T is contained in E. The name of the norm recognizes a celebrated theorem of the brothers Delyon, which implies that ‖⋅‖bfd is equivalent to the supremum norm ‖⋅‖∞ on Hol(E). The purpose of this paper is to develop the theory of holomorphic functions of bfd-norm less than or equal to one on E. To do so we shall employ a remarkable connection between the bfd norm on Hol(E) and the supremum norm ‖⋅‖∞ on the space H∞(G) of bounded holomorphic functions on the symmetrized bidisc, the domain G in C2 defined byG=def{(z+w,zw):|z|
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128732