Schatten class Hankel operators on doubling Fock spaces and the Berger-Coburn phenomenon

Using the notion of integral distance to analytic functions, we give a characterization of Schatten class Hankel operators acting on doubling Fock spaces on the complex plane and use it to show that for f∈L∞, if Hf is Hilbert-Schmidt, then so is Hf¯. This property is known as the Berger-Coburn pheno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-12, Vol.540 (2), p.128596, Article 128596
Hauptverfasser: Asghari, Ghazaleh, Hu, Zhangjian, Virtanen, Jani A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the notion of integral distance to analytic functions, we give a characterization of Schatten class Hankel operators acting on doubling Fock spaces on the complex plane and use it to show that for f∈L∞, if Hf is Hilbert-Schmidt, then so is Hf¯. This property is known as the Berger-Coburn phenomenon. When 00.
ISSN:0022-247X
DOI:10.1016/j.jmaa.2024.128596