Schatten class Hankel operators on doubling Fock spaces and the Berger-Coburn phenomenon
Using the notion of integral distance to analytic functions, we give a characterization of Schatten class Hankel operators acting on doubling Fock spaces on the complex plane and use it to show that for f∈L∞, if Hf is Hilbert-Schmidt, then so is Hf¯. This property is known as the Berger-Coburn pheno...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-12, Vol.540 (2), p.128596, Article 128596 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the notion of integral distance to analytic functions, we give a characterization of Schatten class Hankel operators acting on doubling Fock spaces on the complex plane and use it to show that for f∈L∞, if Hf is Hilbert-Schmidt, then so is Hf¯. This property is known as the Berger-Coburn phenomenon. When 00. |
---|---|
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2024.128596 |