Weak Harnack inequality for doubly non-linear equations of slow diffusion type
We consider non-negative weak super-solutions u:ΩT→R≥0 to the doubly non-linear equation∂t(|u|q−1u)−divA(x,t,u,Du)=0inΩT=Ω×(0,T], where Ω is an bounded open set in RN for N≥2, T>0 and q is a non-negative parameter. Furthermore, the vector field A satisfies standard p-growth assumptions for some p...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-11, Vol.539 (2), p.128541, Article 128541 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider non-negative weak super-solutions u:ΩT→R≥0 to the doubly non-linear equation∂t(|u|q−1u)−divA(x,t,u,Du)=0inΩT=Ω×(0,T], where Ω is an bounded open set in RN for N≥2, T>0 and q is a non-negative parameter. Furthermore, the vector field A satisfies standard p-growth assumptions for some p>1. The main novelty of this paper is that we establish the weak Harnack inequality in the entire slow diffusion regime p−q−1>0. Additionally, we only require that the weak super-solution u is located in the function spaceCloc0([0,T];Llocq+1(Ω))∩Llocp(0,T;Wloc1,p(Ω)). |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2024.128541 |