Weak Harnack inequality for doubly non-linear equations of slow diffusion type

We consider non-negative weak super-solutions u:ΩT→R≥0 to the doubly non-linear equation∂t(|u|q−1u)−divA(x,t,u,Du)=0inΩT=Ω×(0,T], where Ω is an bounded open set in RN for N≥2, T>0 and q is a non-negative parameter. Furthermore, the vector field A satisfies standard p-growth assumptions for some p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-11, Vol.539 (2), p.128541, Article 128541
1. Verfasser: Bäuerlein, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider non-negative weak super-solutions u:ΩT→R≥0 to the doubly non-linear equation∂t(|u|q−1u)−divA(x,t,u,Du)=0inΩT=Ω×(0,T], where Ω is an bounded open set in RN for N≥2, T>0 and q is a non-negative parameter. Furthermore, the vector field A satisfies standard p-growth assumptions for some p>1. The main novelty of this paper is that we establish the weak Harnack inequality in the entire slow diffusion regime p−q−1>0. Additionally, we only require that the weak super-solution u is located in the function spaceCloc0([0,T];Llocq+1(Ω))∩Llocp(0,T;Wloc1,p(Ω)).
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2024.128541