Hölder estimates for viscosity solutions of nonlocal equations with variable-order fractional Laplace term
We consider a class of linear integro-differential equations with variable-order fractional Laplacian. Under sharp assumptions on the variable-order α(x,y), we prove the local Hölder continuity of bounded viscosity solutions. In particular, for the continuous right-hand side f, we show that weak sol...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-10, Vol.538 (2), p.128453, Article 128453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a class of linear integro-differential equations with variable-order fractional Laplacian. Under sharp assumptions on the variable-order α(x,y), we prove the local Hölder continuity of bounded viscosity solutions. In particular, for the continuous right-hand side f, we show that weak solutions are viscosity solutions. Furthermore, we prove a comparison principle for viscosity solutions when the function f is strictly away from zero. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2024.128453 |