Hölder estimates for viscosity solutions of nonlocal equations with variable-order fractional Laplace term

We consider a class of linear integro-differential equations with variable-order fractional Laplacian. Under sharp assumptions on the variable-order α(x,y), we prove the local Hölder continuity of bounded viscosity solutions. In particular, for the continuous right-hand side f, we show that weak sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-10, Vol.538 (2), p.128453, Article 128453
Hauptverfasser: Yang, Mengna, Zhao, Junfeng, Zhang, Haolun, Nie, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of linear integro-differential equations with variable-order fractional Laplacian. Under sharp assumptions on the variable-order α(x,y), we prove the local Hölder continuity of bounded viscosity solutions. In particular, for the continuous right-hand side f, we show that weak solutions are viscosity solutions. Furthermore, we prove a comparison principle for viscosity solutions when the function f is strictly away from zero.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2024.128453