and subnormal safe quotients for geometrically regular weighted shifts
Geometrically regular weighted shifts (in short, GRWS) are those with weights α(N,D) given by αn(N,D)=pn+Npn+D, where p>1 and (N,D) is fixed in the open unit square (−1,1)×(−1,1). We study here the zone of pairs (M,P) for which the weight α(N,D)α(M,P) gives rise to a moment infinitely divisible (...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-10, Vol.538 (2), p.128443, Article 128443 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geometrically regular weighted shifts (in short, GRWS) are those with weights α(N,D) given by αn(N,D)=pn+Npn+D, where p>1 and (N,D) is fixed in the open unit square (−1,1)×(−1,1). We study here the zone of pairs (M,P) for which the weight α(N,D)α(M,P) gives rise to a moment infinitely divisible (▪) or a subnormal weighted shift, and deduce immediately the analogous results for product weights α(N,D)α(M,P), instead of quotients. Useful tools introduced for this study are a pair of partial orders on the GRWS. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2024.128443 |