The Kummer ratio of the relative class number for prime cyclotomic fields

Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet L-ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-10, Vol.538 (1), p.128368, Article 128368
Hauptverfasser: Kandhil, Neelam, Languasco, Alessandro, Moree, Pieter, Saad Eddin, Sumaia, Sedunova, Alisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kummer's conjecture predicts the asymptotic growth of the relative class number of prime cyclotomic fields. We substantially improve the known bounds of Kummer's ratio under three scenarios: no Siegel zero, presence of Siegel zero and assuming the Riemann Hypothesis for the Dirichlet L-series attached to odd characters only. The numerical work in this paper extends and improves on our earlier preprint https://arxiv.org/abs/1908.01152 and demonstrates our theoretical results.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2024.128368