Asymptotic expansions for the alternating Hurwitz zeta function and its derivatives
LetζE(s,q)=∑n=0∞(−1)n(n+q)s be the alternating Hurwitz (or Hurwitz-type Euler) zeta function. In this paper, we obtain the following asymptotic expansion of ζE(s,q)ζE(s,q)∼12q−s+14sq−s−1−12q−s∑k=1∞E2k+1(0)(2k+1)!(s)2k+1q2k+1, as |q|→∞, where E2k+1(0) are the special values of odd-order Euler polynom...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-09, Vol.537 (1), p.128306, Article 128306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetζE(s,q)=∑n=0∞(−1)n(n+q)s be the alternating Hurwitz (or Hurwitz-type Euler) zeta function.
In this paper, we obtain the following asymptotic expansion of ζE(s,q)ζE(s,q)∼12q−s+14sq−s−1−12q−s∑k=1∞E2k+1(0)(2k+1)!(s)2k+1q2k+1, as |q|→∞, where E2k+1(0) are the special values of odd-order Euler polynomials at 0, and we also consider representations and bounds for the remainder of the above asymptotic expansion. In addition, we derive the asymptotic expansions for the higher order derivatives of ζE(s,q) with respect to its first argumentζE(m)(s,q)≡∂m∂smζE(s,q), as |q|→∞. Finally, we also prove a new exact series representation of ζE(s,q). |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2024.128306 |