Sanov-type large deviations and conditional limit theorems for high-dimensional Orlicz balls

In this paper, we prove a Sanov-type large deviation principle for the sequence of empirical measures of vectors chosen uniformly at random from an Orlicz ball. From this level-2 large deviation result, in a combination with Gibbs conditioning, entropy maximization and an Orlicz version of the Poinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-08, Vol.536 (1), p.128169, Article 128169
Hauptverfasser: Frühwirth, Lorenz, Prochno, Joscha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove a Sanov-type large deviation principle for the sequence of empirical measures of vectors chosen uniformly at random from an Orlicz ball. From this level-2 large deviation result, in a combination with Gibbs conditioning, entropy maximization and an Orlicz version of the Poincaré-Maxwell-Borel lemma, we deduce a conditional limit theorem for high-dimensional Orlicz balls. In more geometric parlance, the latter shows that if V1 and V2 are Orlicz functions, then random points in the V1-Orlicz ball, conditioned on having a small V2-Orlicz radius, look like an appropriately scaled V2-Orlicz ball. In fact, we show that the limiting distribution in our Poincaré-Maxwell-Borel lemma, and thus the geometric interpretation, undergoes a phase transition depending on the magnitude of the V2-Orlicz radius.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2024.128169