Sanov-type large deviations and conditional limit theorems for high-dimensional Orlicz balls
In this paper, we prove a Sanov-type large deviation principle for the sequence of empirical measures of vectors chosen uniformly at random from an Orlicz ball. From this level-2 large deviation result, in a combination with Gibbs conditioning, entropy maximization and an Orlicz version of the Poinc...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-08, Vol.536 (1), p.128169, Article 128169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove a Sanov-type large deviation principle for the sequence of empirical measures of vectors chosen uniformly at random from an Orlicz ball. From this level-2 large deviation result, in a combination with Gibbs conditioning, entropy maximization and an Orlicz version of the Poincaré-Maxwell-Borel lemma, we deduce a conditional limit theorem for high-dimensional Orlicz balls. In more geometric parlance, the latter shows that if V1 and V2 are Orlicz functions, then random points in the V1-Orlicz ball, conditioned on having a small V2-Orlicz radius, look like an appropriately scaled V2-Orlicz ball. In fact, we show that the limiting distribution in our Poincaré-Maxwell-Borel lemma, and thus the geometric interpretation, undergoes a phase transition depending on the magnitude of the V2-Orlicz radius. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2024.128169 |